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Abstract

A number of philosophers have thought that fair lotteries over count-
ably infinite sets of outcomes are conceptually incoherent by virtue of
violating Countable Additivity. In this paper, I show that a qualita-
tive analogue of this argument generalizes to an argument against the
conceptual coherence of a much wider class of fair infinite lotteries—
including continuous uniform distributions. I argue that this result
suggests that fair lotteries over countably infinite sets of outcomes
are no more conceptually problematic than continuous uniform dis-
tributions. Along the way, I provide a novel argument for a weak
qualitative, epistemic version of Regularity.

1 Introduction

Is a fair lottery over a countably infinite set of outcomes conceptually coher-
ent? Philosophers of probability have been divided on the question since at
least as far back as when de Finetti [1972] answered it in the affirmative. The
standard argument against the conceptual coherence of such lotteries is that
any probability function that might be thought to represent such a lottery
violates Countable Additivity. Countable Additivity is the following
constraint on a given probability function P :
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• Countable Additivity. Let {A1, A2, . . .} be a countably infinite set
of mutually incompatible propositions. Then:

P (A1 ∪ A2 ∪ . . .) = P (A1) + P (A2) + . . .

It is straightforward to show that any probability function that treats each
member of a countably infinite set of outcomes as equiprobable violates
Countable Additivity. However, many philosophers have thought that
violations of Countable Additivity lead to intuitively undesirable conse-
quences. For example, any probability function that violates Countable
Additivity is non-conglomerable: the probability of some proposition, con-
ditional on every member of a particular partition, is bounded between
two values yet the unconditional probability of that proposition lies out-
side those values.1 Moreover, if one’s subjective probability function is non-
conglomerable, then one cannot employ decision-theoretic dominance rea-
soning.2 It has also been argued that if one’s subjective probability function
violates Countable Additivity, then one will be subject to a Dutch Book.3

As a result, many philosophers have regarded fair lotteries over countably in-
finite sets of outcomes as conceptually incoherent.4

My focus in this paper will not be on the conceptual coherence of fair
lotteries over countably infinite sets of outcomes but rather the conceptual
coherence of fair infinite lotteries in general, including fair lotteries over un-
countably infinite sets of outcomes. I will be especially concerned with what
probability theorists call “continuous uniform distributions”. A continuous
uniform distribution is a distribution over a given interval of real numbers
such that (i) each real number is equiprobable and (ii) the probability of
any sub-interval is proportional to the length of that interval. It is standard
in probability theory to represent a continuous uniform distribution by a
probability function whose probability density function is simply a constant
value. This sort of probabilistic representation finds widespread application
in such fields as statistical theory and statistical mechanics. Moreover, unlike
probability functions that purportedly represent fair lotteries over countably
infinite sets of outcomes, the probability functions that are standardly taken

1See Kadane et al. [1986].
2See Seidenfeld and Schervish [1983].
3See Williamson [1999].
4See Bartha [2004] for further discussion of how Countable Additivity relates to the

conceptual coherence of fair lotteries over countably infinite sets of outcomes.
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to represent continuous uniform distributions do satisfy Countable Addi-
tivity. Accordingly, there has been little dispute concerning the conceptual
coherence (and theoretical fruitfulness) of continuous uniform distributions.

In this paper, I will raise some concerns about the conceptual coherence
of continuous uniform distributions. I will do so by formulating a qualitative
analogue of the standard argument against the conceptual coherence of fair
lotteries over countably infinite sets of outcomes. In particular, I will develop
an argument that any representation of a continuous uniform distribution
that is formulated purely in terms of qualitative probability—i.e., the binary
relation of one proposition being at least as probable as another—violates the
qualitative analogue of Countable Additivity known as Monotone Con-
tinuity. This argument relies on assuming that any qualitative probability
relation satisfies the standard constraints of Nonnegativity, Additivity,
and Transitivity as well as a weak qualitative version of Regularity. The
latter principle states that no impossible proposition is at least as possible
as some possible proposition. I will argue that, if one accepts Countable
Additivity and thereby rejects the conceptual coherence of fair lotteries
over countably infinite sets of outcomes, then one should also accept Mono-
tone Continuity and thereby reject the conceptual coherence of continuous
uniform distributions.

Assuming the Axiom of Choice and that qualitative probability is de-
fined over a σ-algebra, I then generalize this argument to show that any
qualitative probability representation of any fair infinite lottery that satis-
fies the aforementioned constraints violates Monotone Continuity. Thus,
Monotone Continuity is violated by all such qualitative probability rep-
resentations of fair lotteries over countably infinite sets of outcomes, fair
lotteries over continuum-sized sets of outcomes, fair lotteries over ℵ17-sized
sets of outcomes, and so on. In short: the standard argument for rejecting
the conceptual coherence of a fair lottery over a countably infinite set of out-
comes generalizes to an argument for rejecting the conceptual coherence of
any fair infinite lottery.

The above arguments crucially rely on assuming a weak qualitative ver-
sion of Regularity. Because Regularity is a controversial principle—and
because virtually all extant arguments for Regularity have only concerned
a quantitative version of the principle—I will provide a novel argument for
a weak qualitative version of the principle on which qualitative probability
is interpreted as rational comparative confidence. According to the principle
I will defend, one should not be at least as confident in some epistemically
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impossible proposition as in some epistemically possible proposition.
The plan for the paper is as follows. In section 2, I describe the standard

numerical probabilistic representation of continuous uniform distributions in
more detail. In section 3, I introduce the formalism of qualitative probability
and explain how the constraint of Monotone Continuity is a qualitative
analogue of Countable Additivity. In section 4, I show that any quali-
tative probability representation of the continuous uniform distribution that
satisfies Nonnegativity, Additivity, Transitivity, and what I call Weak
Regularity must violate Monotone Continuity. In section 5, I prove a
generalization of this result for arbitrary fair infinite lotteries. In section 6,
I argue for the aforementioned weak qualitative, epistemic version of Reg-
ularity. I close in section 7 with some remarks about the import of the
foregoing discussion.

2 The Continuous Uniform Distribution: Its

Standard Numerical Representation

The continuous uniform distribution over a given interval of real numbers
[a, b]—or, more generally, over a given set of outcomes that can be param-
eterized as such—is the probability distribution that satisfies the following
constraints:

(U1) Each real number in [a, b] is equiprobable.5

(U2) The probability of any sub-interval of [a, b] is proportional to the length
of that sub-interval. Equivalently, given sub-intervals [a1, b1) and [a2, b2),
[a1, b1) is

b1−a1
b2−a2

times as probable as [a2, b2), provided a2 ̸= b2.

The above description may be regarded as a pre-theoretic characterization
of the continuous uniform distribution over [a, b]. To understand it, one
need only an intuitive grasp of the notions of equiprobability and probability
ratio (as in one proposition being twice as probable as another proposition).
Nonetheless, this distribution may be mathematically represented in multiple
ways. I will now describe its standard representation in terms of real-valued
numerical probability. In section 4, I will describe how it can be represented
in terms of qualitative probability.

5More precisely, each singleton included in [a, b] is equiprobable.
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The standard numerical representation of the continuous uniform distri-
bution involves a real-valued numerical probability function P whose proba-
bility density function f is as follows:

f(x) =

{
1

b−a
if a ≤ x ≤ b

0 otherwise

For simplicity, I will focus on the case in which a = 0 and b = 1 in what
follows, and I will call this case “the” continuous uniform distribution. In
this case, for any c, d ∈ [0, 1], P ({c}) = P ({d}) = 0. So, P satisfies (U1).
Additionally, the probability of a given sub-interval [a1, b1) ⊆ [0, 1] is sim-
ply given by P ([a1, b1)) = b1 − a1. So, given sub-interval [a2, b2) ⊆ [0, 1],
P ([a1,b1))
P ([a2,b2))

= b1−a1
b2−a2

, provided a2 ̸= b2. As a result, P satisfies (U2) as well.
Hence, it is appropriate to call P a “representation” of the continuous uni-
form distribution.

It is customary in probability theory to define P not just for sub-intervals
of [0, 1] but for various other subsets as well (namely, the “measurable” sub-
sets). The standard way to do so is to have P assign every Borel set in [0, 1]
its Lebesgue measure.6 The measure-theoretic details of this procedure don’t
matter for our purposes, but it yields a number of probability assignments
that one would intuitively expect. For example, this procedure yields that
P ([0, 1

2
) ∪ [3

4
, 1)) = 1

2
+ 1

4
= 3

4
.

It is well-known that, when P is extended in the above manner, it sat-
isfies Countable Additivity. In this respect, P is unlike any probability
function that might be taken to represent a fair lottery over a countably
infinite set of outcomes. Accordingly, there has been little worry among de-
fenders of Countable Additivity that the probability distribution that P
represents—i.e., the continuous uniform distribution—is conceptually coher-
ent. Later, once we consider a qualitative representation of the continuous
uniform distribution, I will argue that this complacency has been misplaced.

3 Qualitative Probability

In what follows, I understand qualitative probability to be the binary relation
of one proposition being at least as probable as another proposition. I will
employ the following notation:

6See Billingsley [1995], chapter 3.
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• ‘A ⪰ B’: A is at least as probable as B.

• ‘A ≈ B’: A and B are equiprobable.

• ‘A ≻ B’: A is strictly more probable than B.

It is standard to define ‘≈’ and ‘≻’ in terms of ⪰ as follows:

• A ≈ B if and only if A ⪰ B and B ⪰ A.

• A ≻ B if and only if A ⪰ B and B ̸⪰ A.

In what follows, I will assume the above definition of ‘≈’ but not that of ‘≻’,
as the latter is more controversial.7

The central object of formal theories about qualitative probability is a
qualitative probability structure ⟨Ω,F ,⪰⟩, which consists of a non-empty set
Ω of possible outcomes, an algebra F on Ω, as well as a binary relation ⪰
on F . In what follows, I will generally focus on just a given qualitative
probability relation, though it is important to bear in mind that every such
relation is also associated with some Ω and some F . As is standard, I will
also treat propositions as being members of F .

A number of axiomatizations of qualitative probability have been devel-
oped in the literature.8 I will not assume any particular axiomatization in
what follows, but I will assume that any qualitative probability relation ⪰
satisfies at least the following constraints for any propositions A,B,C:

• Nonnegativity. A ⪰ ∅.

• Additivity. Suppose (A ∩ C) = (B ∩ C) = ∅. Then, A ⪰ B if and
only if (A ∪ C) ⪰ (B ∪ C).

• Transitivity. If A ⪰ B and B ⪰ C, then A ⪰ C.

• Weak Regularity. If A ̸= ∅, then ∅ ̸⪰ A.

Note that, if we assume the above definition of ‘≻’, then Weak Regularity
is a consequence of the following:

• Regularity. If A ̸= ∅, then A ≻ ∅.
7See Konek [2019], footnote 4, for an argument against the latter definition when

qualitative probability is interpreted as an agent’s comparative confidence relation.
8See Krantz et al. [1971], chapter 5, for a survey.
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That said, I will not assume Regularity in what follows. I will also not
assume that ⪰ satisfies the following:

• Totality. A ⪰ B or B ⪰ A.

Nonnegativity, Additivity, and Transitivity are entailed by all major
axiomatizations of qualitative probability. Weak Regularity, Regularity,
and Totality are entailed by some axiomatizations, while others are silent
on them.9 Because Weak Regularity is the most controversial constraint I
will assume, I will say much more about it later.

Historically, the main interest in studying qualitative probability has been
to prove various “representation theorems”.10 These are theorems that state
conditions under which a given qualitative probability relation can be “repre-
sented by” some numerical probability function. More precisely, these theo-
rems state conditions under which, for a given qualitative probability relation
⪰, there exists some numerical probability function P such that A ⪰ B if
and only if P (A) ≥ P (B).11 Although I am not primarily concerned with
representation theorems in this paper, one particular class of representation
theorems is worth noting in the present context. These are representation
theorems that state conditions under which a given qualitative probability re-
lation can be represented by a countably additive probability function. Most
notably, Villegas [1964] shows that a necessary condition for a qualitative
probability relation ⪰ to be representable by a countably additive probabil-
ity function is that ⪰ satisfies the following constraint:

• Monotone Continuity.
Consider propositions A1, A2, . . ., and B. Suppose:

(i) A1 ⊆ A2 ⊆ . . .

(ii) A = ∪iAi.

(iii) B ⪰ Ai for all i.

9For example, Regularity and Totality are stated as axioms of qualitative proba-
bility by de Finetti [1937], but only the former is a consequence of Koopman [1940]’s
axiomatization.

10See Fishburn [1986] for a survey of such theorems.
11Strictly speaking, not all representation theorems have exactly this character, though

the strongest such theorems do.
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Then: B ⪰ A.12

Additional representation theorems have revealed further connections be-
tween Monotone Continuity and Countable Additivity as well.13 Such
theorems generally assume that qualitative probability satisfies Nonnega-
tivity, Additivity, Transitivity, and Weak Regularity.14 This fact sug-
gests that Monotone Continuity is, in some sense, a qualitative analogue
of Countable Additivity when these constraints are assumed.

Indeed, there is more to say about the connection between Monotone
Continuity andCountable Additivity than merely that they both appear
in certain representation theorems. For consider the following constraint on
a given numerical probability function P :

• Continuity. Consider propositions A1, A2, . . . Suppose:

(i) A1 ⊆ A2 ⊆ . . .

(ii) A = ∪iAi.

Then: P (A) = limi→∞ P (Ai).

Continuity is sometimes included in the axiomatization of numerical proba-
bility,15 and indeed Countable Additivity entails Continuity. Moreover,
note that Continuity entails a numerical version of Monotone Continu-
ity. In particular, suppose P satisfies Continuity and that P (B) ≥ P (Ai)
for all i, for suitable Ai and B. Then, passing to the limit, it follows that
P (B) ≥ P (A)—which is just a numerical version of the consequent of Mono-
tone Continuity. Thus, if P is a countably additive probability function,
then any qualitative probability relation that P represents satisfies Mono-
tone Continuity.

The above considerations suggest an argument for a conditional conclu-
sion: if we should accept Countable Additivity as a constraint on numer-
ical probability, then we should accept Monotone Continuity as a con-
straint on qualitative probability. This conclusion follows if we assume that

12Here I follow Fishburn [1986]’s formulation of Monotone Continuity, which does
not require F to be a σ-algebra. Also, following most authors, I take A1, A2, . . . to be a
countably infinite sequence here.

13See Chuaqui and Malitz [1983], Chateauneuf and Jaffray [1984], and Schwarze [1989].
14Indeed, I am not aware of any such theorem that does not assume Weak Regularity.
15For example, Kolmogorov [1950]’s theory includes an equivalent axiom.
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any countably additive probability function indeed represents some qualita-
tive probability relation. However, even if we reject this assumption, it is hard
to see why we should accept Countable Additivity yet reject Monotone
Continuity.16 As we just saw, Continuity entails a structurally analogous
numerical version of Monotone Continuity. So, it seems that Monotone
Continuity at least partly captures the intuitive motivation for accepting
Continuity. Moreover, since Countable Additivity entails Continuity,
it seems that Monotone Continuity at least partly captures the intuitive
motivation for accepting Countable Additivity as well. These considera-
tions are by no means decisive, but prima facie it seems there is no reason
to accept Countable Additivity yet reject Monotone Continuity.

In recent work, DiBella [2018] shows that any qualitative probability
relation that satisfies constraints analogous to Nonnegativity, Additiv-
ity, Transitivity, and Weak Regularity and that represents a fair lottery
over a countably infinite set of outcomes violates Monotone Continuity.
Given the aforementioned connections between Monotone Continuity and
Countable Additivity, this result is perhaps unsurprising. After all, it is
well-known that any numerical probability representation of such a lottery
violates Countable Additivity. What is perhaps more surprising is that
any qualitative probability representation of the continuous uniform distri-
bution violates Monotone Continuity as well. I will prove this fact in the
next section.

4 The Continuous Uniform Distribution and

Monotone Continuity

Let me begin with a clarification. When I speak of a qualitative probability
relation that represents the continuous uniform distribution, I use the term
‘represents’ not in the sense of the aforementioned representation theorems
but rather in the informal sense in which a given mathematical model might
be said to represent some collection of pre-theoretic ideas. For example, it
is plausible that the concept of a set in Zermelo-Fraenkel set theory repre-

16Note that the countably additive probability function P from section 2 violates this
assumption if Weak Regularity is assumed. For example, P ({0}) = P ({0.5}) =
P ({0, 0.5}) = 0, so P ({0}) ≥ P ({0, 0.5}). If P represents some qualitative probability
relation ⪰, then {0} ⪰ {0, 0.5}. However, by Weak Regularity, ∅ ̸⪰ {0.5}. So, by
Additivity, {0} ̸⪰ {0, 0.5}.
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sents at least some pre-theoretic conception of collection.17 As I explained in
section 2, the standard numerical representation of the continuous uniform
distribution readily satisfies the pre-theoretic constraints (U1) and (U2)
that characterize the distribution. I will now explain how these constraints
can be satisfied by a qualitative probability relation—and why any such re-
lation violates Monotone Continuity.

Suppose ⪰ is some qualitative probability relation that represents the
continuous uniform distribution. Clearly, ⪰ must satisfy the following con-
straint:

• Fairness. For any i, j ∈ [0, 1], {i} ≈ {j}.

If ⪰ satisfies Fairness, then (U1) is readily satisfied. Indeed, Fairness
plausibly encapsulates what it means for a probability distribution to be
fair—namely, that each outcome is equiprobable.

We might also stipulate that ⪰ satisfies the following constraint:

• Length Ordering. For any [a1, b1), [a2, b2) ⊆ [0, 1], [a1, b1) ⪰ [a2, b2)
if and only if (b1 − a1) ≥ (b2 − a2).

Although Length Ordering does not explicitly make reference to “proba-
bility ratios”—so it is not immediately obvious whether (U2) is satisfied—
there are methods of making sense of probability ratios purely in terms of
qualitative probability such that (U2) is plausibly satisfied if Length Or-
dering is satisfied. In particular, note that any two half-open sub-intervals of
equal length are equiprobable according to Length Ordering. For example,
[0, 1

4
) ≈ [1

4
, 1
2
). Since [0, 1

2
) is simply the union of these two pairwise disjoint

sub-intervals, it seems intuitively plausible that [0, 1
2
) is twice as probable as

each of [0, 1
4
) and [1

4
, 1
2
)—which is exactly what (U2) says.18

In the Appendix, I construct a qualitative probability structure that satis-
fies Nonnegativity, Additivity, Transitivity, Weak Regularity, Fair-
ness, and Length Ordering. This construction shows that there indeed

17See Boolos [1971] for an argument to this effect.
18This is the reasoning Stefánsson [2018] provides to motivate his “Ratio Principle”,

according to which event A is twice as probable as event B just in case there is some
event C such that (i) B ≈ C, (ii) B ∩ C = ∅, and (iii) A = B ∪ C. Elliott [2020] shows
how we can understand rational probability ratio comparisons more generally in terms of
qualitative probability via his “General Ratio Principle”. DiBella [unpublished] generalizes
still further to make sense of arbitrary real-valued probability ratios in qualitative terms.
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exists a qualitative probability representation of the continuous uniform dis-
tribution (in the aforementioned sense).

That said, the stipulation that ⪰ satisfies Length Ordering is unneces-
sary to yield a violation of Monotone Continuity. It suffices merely that
(a) ⪰ satisfies Nonnegativity, Additivity, Transitivity, Weak Regu-
larity, and Fairness; and (b) the algebra F over which ⪰ is defined satisfies
the following weak “measurability” constraint:

• Measurability. F contains every singleton and half-open interval of
the form [a, b) included in [0, 1].

To see how Monotone Continuity is violated, first note that the follow-
ing constraint is a simple consequence of Nonnegativity and Additivity:

• Monotonicity. If A ⊆ B, then B ⪰ A.19

I will sometimes employ Monotonicity in what follows. Here is the main
result of this section.

Theorem 1. Consider a qualitative probability structure ⟨[0, 1],F ,⪰⟩. If
this structure satisfies Nonnegativity, Additivity, Transitivity, Weak
Regularity, Fairness, and Measurability, then ⪰ violates Monotone
Continuity.

Proof. For every positive integer i, let pi =
2i−1
2i

and Ai = [0, pi). Also, let
A = ∪iAi = [0, 1) and B = (0, 1). Note that A1 ⊆ A2 ⊆ . . . I now show that
B ⪰ Ai for every i yet B ̸⪰ A.

Let i be an arbitrary positive integer. Note that 0 < pi < 1. So, (0, pi] ⊆
(0, 1). Thus, by Monotonicity, (0, 1) ⪰ (0, pi]. Moreover, by Fairness,
{pi} ⪰ {0}. So, by Additivity, (0, pi] = [{pi} ∪ (0, pi)] ⪰ [{0} ∪ (0, pi)] =
[0, pi). Thus, by Transitivity, (0, 1) ⪰ [0, pi). That is, B ⪰ Ai.

Next, by Weak Regularity, ∅ ̸⪰ {0}. Thus, by Additivity, ∅ ∪ B ̸⪰
{0} ∪B = A. That is, B ̸⪰ A—in violation of Monotone Continuity.

The above result suggests that the continuous uniform distribution and
fair lotteries over countably infinite sets of outcomes are not as dissimilar
as previous writers on fair infinite lotteries have thought. Once we view

19Proof. Suppose A ⊆ B. Then, (B \A) ∩A = ∅ and (B \A) ∪A = B. By Nonnega-
tivity, (B \A) ⪰ ∅. So, by Additivity, [(B \A) ∪A] ⪰ (∅ ∪A). That is, B ⪰ A.
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such lotteries from a qualitative perspective—and, crucially, assume Weak
Regularity—each fares the same with respect to Monotone Continuity.

Additionally, as I argued in the previous section, if we should accept
Countable Additivity as a constraint on numerical probability, then we
should accept Monotone Continuity as a constraint on qualitative prob-
ability. Thus, if one accepts Countable Additivity and thereby rejects
the conceptual coherence of fair lotteries over countably infinite sets of out-
comes, then one should accept Monotone Continuity and thereby reject
the conceptual coherence of the continuous uniform distribution. At least,
the latter claim follows if one should also accept the assumptions of The-
orem 1. As I said earlier, the most controversial among these is Weak
Regularity. So, whether one should have differing attitudes towards fair
lotteries over countably infinite sets of outcomes and the continuous uniform
distribution largely hinges on the status of Weak Regularity. In section
6, I will argue that one should accept Weak Regularity—at least, in the
special case in which qualitative probability is interpreted as rational com-
parative confidence. However, before I do that, I will prove a generalization
of Theorem 1.

5 Arbitrary Fair Infinite Lotteries and Mono-

tone Continuity

Consider a fair lottery over an arbitrary infinite set Ω of outcomes. Clearly,
any qualitative probability relation ⪰ that represents such a lottery must
satisfy the following constraint:

• Generalized Fairness. For any ω, ω′ ∈ Ω: {ω} ≈ {ω′}.20

To yield a violation of Monotone Continuity in this more general case, I
will assume that the algebra F over which ⪰ is defined satisfies the following
constraint:

• Measurability*. F is a σ-algebra on Ω that contains every singleton
included in Ω.

20Given an infinite set Ω of outcomes, Parker [2020] constructs a qualitative probability
relation ⪰ that satisfies Nonnegativity, Additivity, Transitivity, Weak Regularity,
and Generalized Fairness. Although Parker does not specify the algebra F on which
⪰ is defined, it is clear from his construction that F can be taken to be any algebra on Ω
that contains every singleton included in Ω.
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I now prove the following generalization of Theorem 1.

Theorem 2. Consider a qualitative probability structure ⟨Ω,F ,⪰⟩, where
Ω is infinite. Assume the Axiom of Choice. If this structure satisfies Non-
negativity, Additivity, Transitivity, Weak Regularity, Generalized
Fairness, and Measurability*, then ⪰ violates Monotone Continuity.

Proof. Since Ω is infinite, the Axiom of Choice entails that Ω has a count-
ably infinite subset A = {ω1, ω2, . . .}. For every positive integer i, let
Ai = {ω1, . . . , ωi}. Also, let B = A \ {ω1} = {ω2, ω3, . . .}. Note that
A1 ⊆ A2 ⊆ . . . and A = ∪iAi = {ω1, ω2, . . .}. I now show that B ⪰ Ai

for every i yet B ̸⪰ A.
First, let i be an arbitrary positive integer. Note that (Ai+1 \ {ω1}) =

{ω2, . . . , ωi+1} ⊆ B. So, by Monotonicity, B ⪰ (Ai+1 \ {ω1}). Next, by
Generalized Fairness, {ωi+1} ⪰ {ω1}. Thus, by Additivity, [{ωi+1} ∪
{ω2, . . . , ωi}] ⪰ [{ω1}∪ {ω2, . . . , ωi}]. That is, (Ai+1 \ {ω1}) ⪰ Ai. Hence, by
Transitivity, B ⪰ Ai.

Next, by Weak Regularity, ∅ ̸⪰ {ω1}. Thus, by Additivity, ∅ ∪ B ̸⪰
{ω1} ∪ B = A. That is, B ̸⪰ A—in violation of Monotone Continuity.21

While this result is not a full generalization of Theorem 1—since it re-
quires qualitative probability to be defined over a σ-algebra—it does show
that violations of Monotone Continuity are quite typical among quali-
tative probability representations of fair infinite lotteries (if the Axiom of
Choice is true). As with Theorem 1, the key assumption being made here
about qualitative probability is that it satisfies Weak Regularity. I will
now defend Weak Regularity.

6 In Defense of Weak Regularity

Although the qualitative constraints of Regularity and Weak Regular-
ity have not received much attention in recent philosophical literature, the
following constraint on any numerical probability function P has:

21For an alternative proof of this result (formulated somewhat differently), see Villegas
[1964]’s Lemma 1 and its corollary. Note that Villegas implicitly assumes that every
infinite set has a countably infinite subset, which is entailed by the Axiom of Choice.
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• Quantitative Regularity. If A is possible, then P (A) > 0.22

In what follows, I will refer to the qualitative constraints as Qualitative
Regularity and Weak Qualitative Regularity to distinguish them from
Quantitative Regularity.23

Different versions of Quantitive Regularity vary with respect to differ-
ent types of modality as well as different types of probability. For example,
the following is an epistemic version of Quantitative Regularity:

• Quantitative Epistemic Regularity. If A is epistemically possible
for agent S, then S’s credence function P should be such that P (A) > 0.

One can also consider versions of Quantitative Regularity that are for-
mulated with respect to physical possibility (and objective chance), logical
possibility (and logical probability), and so on.24

Although Quantitative Regularity may seem to be an intuitively plau-
sible principle, several objections have been leveled against it in cases in
which a given numerical probability function is defined over an infinite set
of outcomes.25 While fewer objections have been leveled specifically against
Qualitative Regularity or Weak Qualitative Regularity, perhaps the
most prominent such objection is Williamson [2007]’s “infinite coin toss”
argument.26 That said, I will not defend Weak Qualitative Regularity
by offering new criticisms of Williamson’s argument here.27 Instead, I will
defend Weak Qualitative Regularity by offering a new argument for it.
Then, I will discuss the import of my argument to Wiliamson’s.

By providing an argument for Weak Qualitative Regularity, I also
aim to fill a notable gap in the literature—namely, that virtually all extant
pro-Regularity arguments have concerned Quantitative Regularity rather

22See, for example, Williamson [2007], Hájek [unpublished], Pruss [2013a], Easwaran
[2014], Howson [2017], Benci et al. [2018], and Parker [2019].

23Note that there is no distinctive quantitative analogue of Weak Qualitative Regu-
larity: if 0 ̸≥ P (A), then P (A) > 0.

24See Hájek [unpublished], section 2, for further discussion.
25See Benci et al. [2018], section 4, for a review of such objections.
26Williamson argues againstQuantitative Regularity, Qualitative Regularity, and

Weak Qualitative Regularity. For an additional argument against Weak Qualitative
Regularity, see Pruss [2013b].

27See Weintraub [2008] and Howson [2017] for criticisms of Williamson’s argument.
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than either of its qualitative counterparts.28 Nonetheless, as I will later
explain, it is perfectly consistent to accept Weak Qualitative Regularity
(or even Qualitative Regularity) yet to reject Quantitative Regularity.

6.1 In Defense of Weak Qualitative Epistemic Regu-
larity

In this section, I will defend a specific epistemic version of Weak Qualita-
tive Regularity. It is not the only conceivable epistemic interpretation of
the principle, but I will argue that it is one that holds independent philo-
sophical interest.

Let ⟨Ω,F ,⪰⟩ be a given qualitative probability structure. When such a
structure is taken to represent some scenario, it is standard to regard the
collection of “possibilities” (relevant to the scenario at hand) as being repre-
sented by Ω, any possible proposition as being represented by a non-empty
subset of Ω, and any impossible proposition as being represented by the
empty set. Thus, a less representation-laden formulation of Weak Quali-
tative Regularity is as follows:

• Weak Qualitative Regularity. No impossible proposition is at least
as probable as some possible proposition.

Now, just as we may consider different versions of Quantitative Regular-
ity, so we may consider different versions of the above principle.

For the purposes of this section, I will take ⪰ to represent the attitudes
of comparative confidence that a given agent S should have. That is, I will
interpret ‘A ⪰ B’ as meaning that S should be at least as confident in A
as in B. Additionally, I will take Ω to represent the collection of “epistemic
possibilities” for S (more on this soon) and F to represent the collection of

28The only argument for either Qualitative Regularity or Weak Qualitative Reg-
ularity of which I am aware is Koopman [1940]’s proof of his Theorem 1, part of which
can be interpreted as a version of Qualitative Regularity. However, while the mathe-
matical legitimacy of Koopman’s result is unassailable, it is difficult to extract a precise
philosophical interpretation of his result. For example, Koopman’s discussion leaves open
what exactly ‘Ω’ (‘1’ in Koopman’s terminology)—and, hence, ‘∅’ in the statement that
A ≻ ∅—represents. Presumably, it is some collection of epistemic possibilities for a given
agent, though Koopman does not clarify what such possibilities amount to. I will make
clarifications of this sort in my argument for Weak Qualitative Regularity, and the
formal structure of my argument will be somewhat different from Koopman’s.
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propositions towards which S has attitudes of comparative confidence. These
interpretations lead to the following epistemic version of Weak Qualitative
Regularity:

• Weak Qualitative Epistemic Regularity. For any epistemically
possible A and epistemically impossible B, it is not the case that one
should be at least as confident in B as in A.29

My argument for Weak Qualitative Epistemic Regularity relies on
assuming that the attitudes of comparative confidence an agent should adopt
satisfy Additivity as well as that the following “quasi-definitional” claims
are true:

• (A1) A is epistemically possible for one if and only if it is not the case
that one should be certain in ¬A.

• (A2) If one should be certain in A and one should be at least as
confident in B as in A, then one should be certain in B.

I call these assumptions “quasi-definitional” because I regard (A1) simply
as a theoretically fruitful stipulative definition, and I regard (A2) as being
all but analytic. I will defend these assumptions shortly. However, before I
do so, it is worth clarifying how I am interpreting qualitative probability in
the present epistemic context.

When I say that ‘A ⪰ B’ means that one should be at least as confident
in A as in B, I do not assume that there is a unique rationally permissible
comparative confidence relation for one to adopt. Rather, ⪰ should be un-
derstood as representing that unique relation that contains all and only those
attitudes of comparative confidence that are common to the comparative con-
fidence relations that are rationally permissible for one to adopt. Note that
this interpretation of qualitative probability has distinctive consequences for
how the constraints of qualitative probability are to be interpreted as ratio-
nality requirements. In particular, on this interpretation, the claim that ⪰
satisfies Additivity amounts to the following:

• Epistemic Additivity. Suppose (A∩C) = (B ∩C) = ∅. One should
be at least as confident in A as in B if and only if one should be at
least as confident in (A ∪ C) as in (B ∪ C).

29I take the operative sense of ‘should’ here, and in what follows, to be that of epistemic
rationality.
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Note that this principle is a “doubly narrow-scope” normative interpretation
of Additivity: the ‘should’ scopes twice, narrowly, over the antecedent and
the consequent. That said, this is not the only conceivable interpretation of
Additivity as a rationality requirement. We can also consider the following
“wide-scope” interpretation:

• Epistemic AdditivityWS. Suppose (A ∩ C) = (B ∩ C) = ∅. One
should be such that [one is at least as confident in A as in B if and
only if one is at least as confident in (A ∪ C) as in (B ∪ C)].

More generally, to extract an alternative normative interpretation of quali-
tative probability, we can interpret ⪰ as an actual agent’s comparative con-
fidence relation and then discuss the properties that ⪰ should satisfy. This
approach strikes me as perfectly coherent, and indeed both of the above nor-
mative interpretations of Additivity strike me as independently plausible.
Nonetheless, the normative interpretation of qualitative probability I will
adopt will simply be more useful in my argument for Weak Qualitative
Epistemic Regularity.

6.1.1 In Defense of (A1) and (A2)

As I said above, I regard (A1) simply as a useful stipulative definition. Al-
though the concept of “epistemic possibility” is often understood in terms of
knowledge, there is clearly an analogous concept that involves rational cer-
tainty.30 In particular, I suspect that (A1)—or something close to it—is the
conception of epistemic possibility implicitly assumed by most Bayesian epis-
temologists (and other broadly probabilistic epistemologists) who are con-
cerned with the question of what credences a given agent should adopt. For
what are the “possibilities” associated with Ω that are meant to figure in
our model of such an agent? A natural answer, for starters, is that the “im-
possible” propositions are those that the agent should be certain are false.
Intuitively, these are propositions that are completely “ruled out”. Equiva-
lently, any “possible” proposition included in Ω is one for which it is not the
case that the agent should be certain it is false. Given that Bayesians tend to
theorize primarily in terms of rational certainty (and degrees thereof) rather
than knowledge, then, it seems plausible that (A1) is implicitly assumed

30Note that (A1) is a rational-certainty-based analogue of the “permissive” conception
of epistemic possibility described by Gendler and Hawthorne (2002, 3).
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by many such philosophers. However, even if this sociological hypothesis is
false, it still seems quite plausible that (A1) would be a theoretically fruitful
definition for many Bayesians to adopt, as it would constitute a convenient
item of theoretical vocabulary with which to investigate the question of what
credences an agent should adopt. So, it seems reasonable to adopt (A1) at
least as a stipulative definition in broadly probabilistic contexts and to ex-
plore the consequences of doing so—e.g., whether (A1) leads to a plausible
version of Weak Qualitative Regularity.

Next, (A2) strikes me as being all but analytic.31 If it turned out to be
false, then I would simply have to confess to being unable to understand what
the words employed in (A2) meant. That said, it is important to bear in
mind that (A2) explicitly concerns rational doxastic attitudes—specifically,
rationally required attitudes of certainty and comparative confidence. It is
not a claim about our mathematical representations of such attitudes. In par-
ticular, it should not be interpreted under the assumption that the phrase
“one should be certain in A” means (i) that A = Ω, (ii) that one should be
equally confident in A and Ω, or (iii) that one’s credence function P should
be such that P (A) = P (Ω) = 1. To be sure, the latter claims are familiar
consequences of our standard mathematical representations of “rationally re-
quired certainty”. However, since they all involve the representation-laden
notion of Ω, it is hard to see how any of them could spell out the meaning of
“rationally required certainty”—at least, not as we might pre-theoretically
understand the term. Nonetheless, I take it that we do have at least some
pre-theoretic understanding of the concept should be certain, and I regard
(A2) merely as expressing a pre-theoretic platitude about this concept (as
well as that of should be at least as confident as). Thus, any legitimate as-
sessment of (A2) must ultimately concern the rationally required attitudes
of certainty and comparative confidence themselves—not merely our math-
ematical representations of them. Let me illustrate this point by describing
an excessively representation-laden objection to (A2).

Consider a fair throw of an infinitely thin dart at the interval [0, 1], and
let A be the proposition that the dart will not land at the point 0.2.32 For the
sake of the present objection, let us assume that Quantitative Epistemic

31I say “all but analytic” rather than “analytic” lest it be worried whether there are
any genuinely analytic claims. Nonetheless, I regard (A2) as being epistemically on par
with seemingly paradigmatically analytic claims like ‘All bachelors are unmarried’.

32I assume here, for the sake of argument, that such a scenario is conceptually coherent.
If that is not the case, then this objection cannot be coherently formulated.
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Regularity is false. It then follows that your credence function P should
be such that P (A) = 1. Since you should have maximal credence in A, one
might therefore think that you should be at least as confident in A as in
every proposition. In particular, one might think that you should be at least
as confident in A as in the proposition that the dart will land somewhere
in [0, 1]—which, by assumption, you should be certain in. By (A2), it then
follows that you should be certain in A. However, it seems clear that this is
not the case; at best, you should be “almost” certain in A. Hence, one might
think that (A2) fails.

The problem with this objection is that it smuggles in the representation-
theoretic assumption that if you should have P (p) ≥ P (q), then you should
be at least as confident in p as in q.33 (This assumption licenses the inference
from the claim that you should have P (A) = 1 to the claim that you should
be at least as confident in A as in every proposition.) However, as is the
case with all representation-theoretic claims that connect rational compar-
ative confidence and rational numerical credence, whether this assumption
holds depends on what specific properties are satisfied by rational compar-
ative confidence. In particular, whether this assumption holds depends on
whether Weak Qualitative Epistemic Regularity is true. Indeed, if the
latter (along with Epistemic Additivity) is true, then it’s not the case
that you should be at least as confident in A as in the proposition that
the dart will land somewhere in [0, 1]. So, even if we grant the falsity of
Quantitative Epistemic Regularity, the above objection requires the
additional assumption that Weak Qualitative Epistemic Regularity is
false—which is precisely to beg the question in the present context.

6.1.2 The Argument for Weak Qualitative Epistemic Regularity

I now present the argument forWeak Qualitative Epistemic Regularity.

Theorem 3. Suppose (A1), (A2), and Epistemic Additivity are true.
Then, Weak Qualitative Epistemic Regularity is true.

Proof. Suppose A is epistemically possible for S and B is epistemically im-
possible for S. We need to show that B ̸⪰ A.

Suppose for reductio that B ⪰ A. By (A1), S should be certain in ¬B.
Also, since B is epistemically impossible, B = ∅. So, ∅ ⪰ A. Further, by

33That is, the objection commits what Easwaran [2014] calls the “numerical fallacy”.
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Epistemic Additivity, ¬A ⪰ (A ∪ ¬A) = Ω = ¬B. Thus, by (A2), S
should be certain in ¬A. However, by (A1), it is not the case that S should
be certain in ¬A. Contradiction.

6.2 Discussion

I will now make a few remarks about the import of the above argument.
First, I have only argued that we should accept an epistemic version of

Weak Qualitative Regularity. I have not argued that we should accept
Weak Qualitative Regularity in an unqualified manner or that we should
accept other versions of Weak Qualitative Regularity (e.g., one formu-
lated in terms of physical possibility and objective chance). It might be
that the above argument can be modified to support other versions of Weak
Qualitative Regularity, but I have not attempted to do so here.

Second, note that Weak Qualitative Epistemic Regularity is ex-
tremely weak. It only states that it is not the case that one should be at
least as confident in some epistemically impossible proposition as in some
epistemically possible proposition. This is weaker than the claim that one
should be such that one is not at least as confident in some epistemically
impossible proposition as in some epistemically possible proposition—i.e.,
that it is rationally impermissible for one to be at least as confident in some
epistemically impossible proposition as in some epistemically possible propo-
sition. As before, I leave open whether my argument for Weak Qualitative
Epistemic Regularity can be modified to support this stronger claim.

Third, let us see how Weak Qualitative Epistemic Regularity bears
on the epistemic significance of Theorem 1. Let us first suppose that
Monotone Continuity, Nonnegativity, Additivity, and Transitivity
are indeed constraints on rational comparative confidence. Then, Theorem
1 admits of at least two epistemic interpretations:

(a) If there is some continuum-sized lottery in whose outcomes one should
be equally confident, then one should be at least as confident in some
epistemically impossible proposition as in some epistemically possible
proposition.

(b) If there is some continuum-sized lottery in whose outcomes it is per-
missible to be equally confident, then it is permissible for one to be
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at least as confident in some epistemically impossible proposition as in
some epistemically possible proposition.34

On the first interpretation, the lottery in question is one such that one should
be equally confident in every epistemically possible outcome (and one should
be certain that some such outcome obtains). On the second interpretation,
the lottery in question is one such that it is merely permissible to be equally
confident in every epistemically possible outcome (and one should be certain
that some such outcome obtains). Since the consequent of (a)—but not
that of (b)—conflicts with Weak Qualitative Epistemic Regularity, my
argument for the latter therefore only has bearing on the first interpretation
of Theorem 1. Thus, I do not take the epistemic upshot of Theorem 1 to
be that it is impermissible for one to be equally confident in each outcome of
any continuum-sized lottery. Rather, I only take the epistemic upshot of the
theorem to be that there is no continuum-sized lottery in whose outcomes
one should be equally confident. While one might think that the latter claim
is prima facie implausible, the claim that there is some continuum-sized
lottery in whose outcomes one should be equally confident does not quite
seem to have the plausibility of the quasi-definitional claims (A1) and (A2)
that lead to Weak Qualitative Epistemic Regularity. Indeed, the claim
that there is some continuum-sized lottery in whose outcomes one should be
equally confident seems no more prima facie plausible than the claim that
there is some countably infinite lottery in whose outcomes one should be
equally confident—which, of course, the defender of Countable Additivity
must reject. So, if one accepts Monotone Continuity—and recall earlier I
argued that if one should accept Countable Additivity, then one should
accept Monotone Continuity—it would seem that the most principled
response for the defender of Monotone Continuity is simply to follow
suit by rejecting the claim there is some continuum-sized lottery in whose
outcomes one should be equally confident.

Finally, I have not argued that we should accept any version of Quan-
titative Regularity. In fact, accepting Weak Qualitative Regular-
ity (or even Qualitative Regularity) is perfectly compatible with reject-

34Per Measurability, I assume on each of these interpretations that one has attitudes
of comparative confidence towards every proposition involving such a lottery that can
be parameterized as a singleton or half-open interval of the form [a, b) included in [0, 1].
Analogous interpretations—involving fair infinite lotteries in general—are also available
for Theorem 2, provided the Axiom of Choice is true.
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ing Quantitative Regularity. Accepting Weak Qualitative Regular-
ity (or Qualitative Regularity) yet rejecting Quantitative Regularity
merely amounts to denying that any weakly regular (or fully regular) quali-
tative probability relation is perfectly representable via numerical probabil-
ity.35 Moreover, not all arguments against Quantitative Regularity can
be straightforwardly transformed into arguments against Qualitative Reg-
ularity or Weak Qualitative Regularity. For example, Hájek [unpub-
lished] and Pruss [2013a]’s “cardinality” arguments against Quantitative
Regularity have no obvious qualitative analogue, as their arguments turn
essentially on the relation between the cardinality of the set of possible out-
comes and the cardinality of the range of values of numerical probability
functions. However, qualitative probability relations have no “range” of nu-
merical values. Nonetheless, Williamson [2007] argues against Quantitative
Regularity and its qualitative counterparts. So, I will now turn specifically
to his argument against Weak Qualitative Regularity.36

6.3 Williamson’s Argument against Weak Qualitative
Regularity

Williamson formulates his arguments against the various regularity princi-
ples as being against all versions of these principles—including physical and
epistemic versions.37 In each argument, the key premise that Williamson
employs is the following:

35That said, my argument for Weak Qualitative Epistemic Regularity can be
transformed into an argument for Quantitative Epistemic Regularity if we add the
assumption that one’s credence function P always represents one’s comparative confidence
relation ⪰ (in the sense described in section 3). Then, since it is not the case that ⪰
should be such that ∅ ⪰ A for any epistemically possible A, it is not the case that P
should be such that P (∅) ≥ P (A). So, P should be such that P (A) > P (∅) = 0. By the
same lights, this representational assumption also leads to an argument for Quantitative
Epistemic Regularity if Qualitative Epistemic Regularity is true. However, to
satisfy Quantitative Regularity, one generally needs to allow probability functions to
take on infinitesimal values in addition to real values. (See Benci et al. [2018].) So, if one
has independent objections to infinitesimal probability but not to qualitative probability,
one may embrace Weak Qualitative Regularity—or even Qualitative Regularity—
while rejecting Quantitative Regularity.

36Williamson’s rejection of Weak Qualitative Regularity is the “similar conclusion”
he reaches at step (17).

37Williamson: “Henceforth, we need not specify what kind of probability is in play,
because the argument [against Regularity] is the same for all kinds” (2007, 174).
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• Isomorphism Principle. If two events are isomorphic (in the relevant
sense), then they are equiprobable.38

Construed epistemically, the above principle becomes:

• Epistemic Isomorphism Principle. If two events are isomorphic
(in the relevant sense), then one should be equally confident in them.

An example will serve to clarify the “relevant sense” of isomorphism here.
Suppose a fair coin is tossed infinitely many times at one-second intervals,
starting at some time t, where each toss is independent of each other. Let
H(1 . . .) be the event that the coin comes up heads on teach toss, and let
H(2 . . .) be the event that the coin comes up heads each time from one
second after t. Williamson regards these events as relevantly isomorphic since
“we can map the constituent single-toss events of H(1 . . .) one-one onto the
constituent single-toss events of H(2 . . .) in a natural way that preserves the
physical structure of the set-up just by mapping each toss to its successor”
(2007, 175). So, by the Epistemic Isomorphism Principle, one should
be equally confident in H(1 . . .) and H(2 . . .).

To spell out Williamson’s argument against Weak Qualitative Reg-
ularity, let H(1) be the event that the coin lands heads on the first toss.
Since the tosses are fair and mutually independent, [¬H(1) ∩ H(2 . . .)] ⪰
H(1 . . .). Moreover, by the Isomorphism Principle, H(1 . . .) ⪰ H(2 . . .).
So, by Transitivity, [¬H(1) ∩H(2 . . .)] ⪰ H(2 . . .). Equivalently, [¬H(1) ∩
H(2 . . .)] ⪰ [H(1 . . .) ∪ (¬H(1) ∩ H(2 . . .)]. Thus, by Additivity, ∅ ⪰
H(1 . . .)—in violation of Weak Qualitative Regularity. Since Williamson
intends his argument to apply to any version of Weak Qualitative Reg-
ularity, it therefore constitutes an argument against Weak Qualitative
Epistemic Regularity when ‘⪰’ is interpreted as rationally required com-
parative confidence.

Let us now compare the assumptions of Williamson’s argument with the
assumptions of my argument for Weak Qualitative Epistemic Regular-
ity. Both arguments assume an epistemic version of Additivity. Williamson’s
argument additionally assumes the Epistemic Isomorphism Principle
and an epistemic version of Transitivity, and my argument additionally
assumes (A1) and (A2). Because the two arguments yield inconsistent con-
clusions, we cannot rationally embrace all of these assumptions. For the sake

38Here I follow the terminology of Parker [2019]’s reconstruction of Williamson’s argu-
ment.
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of the present discussion, let us assume that we should accept the uncontro-
versial Additivity and Transitivity. Should we also accept Williamson’s
Epistemic Isomorphism Principle or the pair of (A1) and (A2)?

I have already defended (A1) and (A2) earlier. So, let us consider the
Epistemic Isomorphism Principle. In his elaboration of Williamson’s
argument, Parker [2019] motivates the Epistemic Isomorphism Principle
via the following physical construal of the Isomorphism Principle:

• Physical Isomorphism Principle. If two events are isomorphic,
then they are objectively equiprobable (i.e., have the same chance).

Parker argues that this principle—in conjunction with Lewis [1980]’s Princi-
pal Principle—implies the Epistemic Isomorphism Principle. Moreover,
Parker takes one of the motivating ideas behind the Physical Isomorphism
Principle to be that “the chance of an event is determined by the physical
laws and local, qualitative circumstances” (2019, 4). However, while this
claim has an air of intuitive plausibility, it is also a substantive metaphysical
thesis that is far from obviously true. For consider the following competing
hypotheses about the nature of chance:

• Chance Absolutism. Chance is fundamentally a monadic property
of events (which may be numerically measured using the resources of
probability theory).

• Chance Comparativism. Chance is fundamentally a binary relation
among events and only derivatively a monadic property of individual
events. For example, claims of the sort “Event A is more objectively
probable than event B” are more fundamental than claims of the sort
“The chance of A is x”.

No doubt Chance Absolutism is, as a matter of sociological fact, more
commonly accepted among philosophers and scientists than Chance Com-
parativism. Moreover, if we accept Chance Absolutism, then the claim
Parker appeals to in motivating the Physical Isomorphism Principle ap-
pears intuitively plausible. After all, if chance is fundamentally monadic,
what could determine the chance of an event but its local, qualitative cir-
cumstances? Nonetheless, there are reasons to doubt Chance Absolutism.
In particular, though he doesn’t discuss chance specifically, Dasgupta [2013]
provides a compelling argument for a fully general comparativism about
quantity—of which Chance Comparativism appears to be a special case.
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However, if we accept Chance Comparativism, then there seems to be
little reason why the chance of an event must be determined entirely by its
local, qualitative circumstances. If chance is fundamentally relational, then
the chance of some event A could conceivably be partly determined by non-
local circumstances—namely, by comparative chance relations that A bears
to events not concerning the specific spatiotemporal locations with which A
is concerned. However, if this is the case, then we seem to lose our moti-
vation for the Physical Isomorphism Principle and, by extension, the
Epistemic Isomorphism Principle.

All of that said, I do not claim that Chance Comparativism is true
and that Chance Absolutism is false. Rather, my point is that the Epis-
temic Isomorphism Principle seems to inherit its intuitive plausibility
partly from the non-trivial metaphysical claim that Chance Absolutism is
true—at least, if we follow Parker’s approach in motivating the Epistemic
Isomorphism Principle. By contrast, as I have argued, (A1) is merely
a fruitful stipulative definition, and (A2) is all but analytic. They are not
substantive metaphysical claims, nor are they even substantive claims about
the requirements of epistemic rationality (as, e.g., Epistemic Additivity
is). As such, they appear to be on firmer footing than that which Parker has
provided for the Epistemic Isomorphism Principle.

Nonetheless, even if we don’t take Parker’s detour through chance, ac-
cepting the Epistemic Isomorphism Principle still seems to presuppose
that how confident one should be in the occurrence of a physical event is
entirely determined by intrinsic features of that event and not at all by that
event’s relations to other events. As with chance, this is a non-trivial assump-
tion to make—in this case, about the requirements (or grounds) of epistemic
rationality. However, it is difficult to see how this assumption could follow
from stipulative definitions like (A1) or claims with comparable epistemic
status to all-but-analytic claims like (A2). So, if we had to choose between
the Epistemic Isomorphism Principle and the pair of (A1) and (A2),
my bet would be firmly on the latter—and, thus, on Weak Qualitative
Epistemic Regularity.

7 Conclusion

I have shown that a qualitative analogue of the standard argument against the
conceptual coherence of fair lotteries over countably infinite sets of outcomes
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generalizes to an argument against the conceptual coherence of a much wider
class of fair infinite lotteries—including the continuous uniform distribution.
As we saw, the crucial assumption of this argument was that qualitative
probability satisfies Weak Qualitative Regularity. So, along the way, I
provided a new argument for an epistemic version of Weak Qualitative
Regularity. I will close by making a few remarks about the import of the
foregoing discussion.

First, because the standard numerical representation of the continuous
uniform distribution is employed in various statistical and scientific appli-
cations, it might be worried whether the generalized argument against its
conceptual coherence threatens the legitimacy of this representation for one
who accepts Countable Additivity. I do not believe that it does. While
the arguments of this paper have bearing on the philosophical interpretation
of this representation, they needn’t affect its statistical or scientific util-
ity. One can continue to accept Countable Additivity yet hold that the
standard numerical representation of the continuous uniform distribution is
merely a useful mathematical tool that doesn’t perfectly represent anything
in the real world (or in the world of ideally rational epistemic agents). In-
deed, many theoretically fruitful mathematical representations have such a
character—physical theories that involve mathematical singularities, theories
that represent discrete quantities as continuous, and so on. If one wishes to
defend Countable Additivity, then one need only add the standard nu-
merical representation of the continuous uniform distribution to this long
list.

Second, I have not argued that one should reject the conceptual coherence
of the continuous uniform distribution. I have only argued that, if one
rejects the conceptual coherence of fair lotteries over countably infinite sets
of outcomes on grounds of Countable Additivity, then one should reject
the conceptual coherence of the continuous uniform distribution on grounds
of Monotone Continuity. However, I have neither argued that one should
accept Countable Additivity as a constraint on numerical probability nor
that one should acceptMonotone Continuity as a constraint on qualitative
probability. Whether one should indeed accept these constraints is a question
beyond the scope of the present paper.

Finally, I have only discussed how one allegedly problematic feature of
fair lotteries over countably infinite sets of outcomes—namely, the failure
of Countable Additivity—generalizes to arbitrary fair infinite lotteries. I
have not discussed whether, and how, other such features generalize to arbi-
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trary fair infinite lotteries. For example, I have not discussed whether quali-
tative probability relations that represent arbitrary fair infinite lotteries are
susceptible to a qualitative analogue of non-conglomerability or any decision-
theoretic defects (cf. section 1). Nonetheless, at least with respect to the
former, there are reasons to suspect that they are. In particular, assuming
standard axioms of qualitative conditional probability, DiBella [2018] shows
that any qualitative conditional probability relation that represents a fair lot-
tery over a countably infinite set of outcomes must be non-conglomerable (in
a precise qualitative sense). Since (assuming the Axiom of Choice) any fair
infinite lottery includes a fair countably infinite sub-lottery, it seems reason-
able to suspect more generally that any qualitative probability relation that
represents a fair infinite lottery must also be non-conglomerable. That said,
a detailed discussion of qualitative non-conglomerability requires considering
the nuances of qualitative conditional probability—and not, as I have done
in this paper, merely qualitative unconditional probability—so I cannot say
more about it here. Nonetheless, these issues merit further investigation.

8 Appendix: Qualitative Representation of

the Continuous Uniform Distribution

Here I construct a qualitative probability structure ⟨Ω,F ,⪰⟩ that represents
the continuous uniform distribution in the sense that it satisfies Nonneg-
ativity, Additivity, Transitivity, Weak Regularity, Measurability,
Fairness, and Length Ordering.

First, let Ω = [0, 1], and let F be the set that contains every subset A of
Ω of the following form for non-negative integers l,m, n:

A = (A1 \ A2) ∪ A3

=
(
([a1, b1] ∪ . . . ∪ [al, bl]) \ {c1, . . . , cm}

)
∪ {d1, . . . , dn},

where A1 = ([a1, b1]∪. . .∪[al, bl]), A2 = {c1, . . . , cm} ⊆ A1, A3 = {d1, . . . , dn},
ai ̸= bi, [ai, bi] ∩ [aj, bj] = ∅ if i ̸= j, and (A1 ∩ A3) = ∅. (If l = 0, m = 0,
or n = 0, then A1, A2, or A3 is empty, respectively.) It is straightforward
to show that F is an algebra on Ω and that every member of F admits of a
unique decomposition of the above form. Clearly, F satisfiesMeasurability.

Next, given A’s decomposition of the above form, let L(A) = (b1 − a1) +
. . .+(bl−al) and N(A) = l−m+n if A ̸= ∅; if A = ∅, let L(A) = N(A) = 0.
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Also, for any A,B ∈ F , let A ⪰ B if and only if one of the following
conditions holds:

(a) L(A) > L(B).

(b) L(A) = L(B) and N(A) ≥ N(B).

It is straightforward (but tedious) to verify that ⪰ satisfies Nonnegativity,
Additivity, Transitivity, Weak Regularity, Fairness, and Length Or-
dering. For illustration, I will only demonstrate that ⪰ satisfies Additivity
here; the other cases are similar.

Suppose (A ∩ C) = (B ∩ C) = ∅. Clearly, L(A ∪ C) = L(A) + L(C),
L(B ∪ C) = L(B) + L(C), N(A ∪ C) = N(A) + N(C), and N(B ∪ C) =
N(B)+N(C). For the left-to-right direction, suppose A ⪰ B. There are two
cases to consider: (i) L(A) > L(B); or (ii) L(A) = L(B) and N(A) ≥ N(B).
In each case, it readily follows that (A ∪ C) ⪰ (B ∪ C). For the right-to-left
direction, suppose (A ∪ C) ⪰ (B ∪ C). There are two cases to consider: (i)
L(A∪C) > L(B∪C); or (ii) L(A∪C) = L(B∪C) and N(A∪C) ≥ N(B∪C).
In case (i), it follows that L(A) > L(B). In case (ii), it follows that L(A) =
L(B) and N(A) ≥ N(B). Thus, in each case, it follows that A ⪰ B.
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